Anais Do XXII Simpósio Em Sistemas Computacionais De Alto Desempenho (SSCAD 2021) 2021
DOI: 10.5753/wscad.2021.18527
|View full text |Cite
|
Sign up to set email alerts
|

An Open-Source Cloud-FPGA Gene Regulatory Accelerator

Abstract: FPGAs are suitable to speed up gene regulatory network (GRN) algorithms with high throughput and energy efficiency. In addition, virtualizing FPGA using hardware generators and cloud resources increases the computing ability to achieve on-demand accelerations across multiple users. Recently, Amazon AWS provides high-performance Cloud's FPGAs. This work proposes an open source accelerator generator for Boolean gene regulatory networks. The generator automatically creates all hardware and software pieces from a … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
12
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

2
0

Authors

Journals

citations
Cited by 2 publications
(15 citation statements)
references
References 23 publications
1
12
0
2
Order By: Relevance
“…Section 3.2 introduces the first cloud GRN FPGA accelerator for attractor computation developed in our previous work. 18 We propose an enhanced version by using presents the CPU/FPGA integration at the software level by using OpenCL.…”
Section: Grn Acceleratorsmentioning
confidence: 99%
See 2 more Smart Citations
“…Section 3.2 introduces the first cloud GRN FPGA accelerator for attractor computation developed in our previous work. 18 We propose an enhanced version by using presents the CPU/FPGA integration at the software level by using OpenCL.…”
Section: Grn Acceleratorsmentioning
confidence: 99%
“…In our previous work, 18 the time multiplexer interconnection approach requires a large bus bandwidth to send/receive the data to/from the CPU.…”
Section: Chained Accelerator Architecturementioning
confidence: 99%
See 1 more Smart Citation
“…Outras implementac ¸ões em FPGA descritas em Verilog para redes Booleanas foram apresentadas em [Miskov-Zivanov et al 2011] e [Manica 2019] mostrando um ganho de desempenho comparado ao simulador Booleanet implementado em software [Albert et al 2008]. Enquanto os trabalhos anteriores foram apenas simulados ou avaliados em placas isoladas, para simplificar a tarefa de projeto e disponibilizar as ferramentas para comunidade em geral, um gerador de código para FPGA com acesso nas plataformas de nuvem foi proposto em [da Silva et al 2017] e [Braganc ¸a et al 2021] que executam na plataforma HARP da Intel e nos FPGAs da Xilinx na Amazon. Os geradores mostraram ganhos de 12× e 64× em comparac ¸ão com uma GPU V100 e um processador com 64 núcleos, respectivamente.…”
Section: Trabalhos Relacionadosunclassified
“…Cada EP irá implementar a func ¸ão de um gene. As ligac ¸ões entre os EPs irão fazer a comunicac ¸ão para a evoluc ¸ão da dinâmica da rede [Braganc ¸a et al 2021].…”
Section: Introduc ¸ãOunclassified