In recent years, there has been an increasing urgency among energy-intensive companies to find innovative ways of mitigating the negative financial impacts of rising fuel and electricity prices. Consequently, companies are exploring new technological solutions to lower electricity costs, such as investing in their own power generation sources or storage systems. In this context, this article presents a data-driven optimization-based framework to manage and optimize the operation of a hybrid energy system within industries characterized by substantial power requirements. The framework encompasses several key aspects: electricity generation, self-consumption, storage, and electric grid interaction. The case of an energy-intensive company specializing in wood processing and office furniture production is evaluated. This study explored two system configurations of hybrid energy systems within an energy-intensive company. The result of the analyzed case shows that the system’s flexibility is enhanced by its ability to store energy, resulting in electricity cost savings of nearly 72% and total operating cost savings of 20%.