Grating plays an essential role in various optical systems owing to its unique dispersion properties. In recent years, there is increasing demand to miniaturize optical systems for a wide range of field applications. Therefore, the integration of diffraction grating with MEMS technology provides an efficient way to build truly miniaturized optical systems. Till now, MEMS diffraction gratings have mainly been explored in two directions, namely MEMS scanning gratings and MEMS tunable gratings. MEMS scanning gratings are constructed with a variety of MEMS actuators to drive a grating platform to scan across the target, and they play a significant role in various scanning systems. Meanwhile, the dispersive properties of grating scanners make them attractive in wavelength sensing applications, including spectrometers and hyperspectral imaging systems. Tunable gratings typically employ MEMS actuators to dynamically change the diffraction properties, thus tuning its wavelength sensitivity for a specific application. Thus, this review will introduce these two types of MEMS gratings in detail and evaluate their efficiency and advantages in various fields.