A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the quasi-static acoustic mapping (Q-SAM) method to a database of acoustic spheres generated using the fundamental rotorcraft acoustics modeling from experiments (FRAME)
technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic
spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch-up and roll maneuvers, with good
agreement between the measured data and the FRAME-QS model.