Efficient weapon threat assignment reflects military proficiency and requires prompt decision while managing the available resources. An important problem which commanders/decision makers face is to optimally utilize the resources in complex and time constraints situations. Several solutions have been proposed in the literature. In this paper, an innovative approach is proposed for threat evaluation and weapon assignment (TEWA) by following 3-dimensional stable marriage algorithm (3-D SMA). This proposed model incorporates new parameters and constraints i.e. supply chain, inventory of resources and multiple threats-weapons assignments that outperforms the previous techniques. This suggested model is based on threat perception followed by an integration of parametric based automatic threat evaluation technique for further weapon scheduling and assignment problem keeping in view that the threat with greater threat index has higher priority to be intercepted and weapons' kill probability. The experimental section shows that our proposed approach has greatly improved in comparison with other approaches. The results showed that the threat neutralization is improved up to 25% reducing the usage of ammunition till 31.1%. The damage of assets abridged to 28.5% in comparison with existing approaches. The proposed approach elucidates that TEWA is an efficient real-time threat perception and optimal multi-threat scheduling problem at weapons' resolution. It is a three-stage process, where the first stage perceives the threat, the second stage works on threat evaluation and the final stage focuses on weapon scheduling and assignment problem. The addition of new parameters and constraints in the new proposed model makes it a unique approach in which more accurate results, in neutralizing the threats, are obtained with less use of ammunition and damage of assets that makes TEWA more effective and efficient tool for optimum decision making in time critical situations.