Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The determination of operation area from en-route alternates for long-range airline aircraft is an important aspect of ensuring safety of the upcoming flight. In the domestic and foreign methodological literature on flight planning, including the guidance material for flight planning systems, there is no single reasonable algorithm for constructing operation areas of long-range aircraft, including the use of the EDTO-ETOPS rules. The lack of methodological materials leads to the «free» values determination of areas of operation by airlines for their long-range aircraft while building routes, in particular, when determining the areas of operation on the route, the decrease in the aircraft weight during fuel combustion is ignored. A big question is also the «initial» mass calculations to determine the value of operation areas. The article identifies shortcomings of existing algorithm for identifying the areas of operation based on the fundamental methods for determining area of operation. Microsoft Excel 2019 has been used to perform a polynomial approximation of the table-specific function of the dependence of operation radius on the mass of a long-range aircraft. Based on the certain equations, more advanced algorithm to determine areas of operation has been developed. The new algorithm pays special attention to the selection of the original value of operation area. The calculations in this article are made for the Boeing 777 as the main type of long-range aircraft operated by airlines in the Russian Federation. The developed algorithm increases the flexibility of the route by increasing the radius of operation areas from en-route alternates and can be used in flight planning systems of airlines.
The determination of operation area from en-route alternates for long-range airline aircraft is an important aspect of ensuring safety of the upcoming flight. In the domestic and foreign methodological literature on flight planning, including the guidance material for flight planning systems, there is no single reasonable algorithm for constructing operation areas of long-range aircraft, including the use of the EDTO-ETOPS rules. The lack of methodological materials leads to the «free» values determination of areas of operation by airlines for their long-range aircraft while building routes, in particular, when determining the areas of operation on the route, the decrease in the aircraft weight during fuel combustion is ignored. A big question is also the «initial» mass calculations to determine the value of operation areas. The article identifies shortcomings of existing algorithm for identifying the areas of operation based on the fundamental methods for determining area of operation. Microsoft Excel 2019 has been used to perform a polynomial approximation of the table-specific function of the dependence of operation radius on the mass of a long-range aircraft. Based on the certain equations, more advanced algorithm to determine areas of operation has been developed. The new algorithm pays special attention to the selection of the original value of operation area. The calculations in this article are made for the Boeing 777 as the main type of long-range aircraft operated by airlines in the Russian Federation. The developed algorithm increases the flexibility of the route by increasing the radius of operation areas from en-route alternates and can be used in flight planning systems of airlines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.