2021
DOI: 10.48550/arxiv.2103.06611
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

An Optimal-Transport-Based Reinforcement Learning Approach for Computation Offloading

Abstract: With the mass deployment of computing-intensive applications and delay-sensitive applications on end devices, only adequate computing resources can meet differentiated services' delay requirements. By offloading tasks to cloud servers or edge servers, computation offloading can alleviate computing and storage limitations and reduce delay and energy consumption. However, few of the existing offloading schemes take into consideration the cloud-edge collaboration and the constraint of energy consumption and task … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?