Proceedings of the 25th Brazillian Symposium on Multimedia and the Web 2019
DOI: 10.1145/3323503.3349548
|View full text |Cite
|
Sign up to set email alerts
|

An optimization model for temporal video lecture segmentation using word2vec and acoustic features

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
3

Year Published

2020
2020
2023
2023

Publication Types

Select...
2
2
2

Relationship

1
5

Authors

Journals

citations
Cited by 10 publications
(11 citation statements)
references
References 19 publications
0
8
0
3
Order By: Relevance
“…Many recent works analyze the audio or audio transcripts of lecture videos with different objectives such as topic-wise segmentation of the lecture. The video is usually divided into small segments (e.g by using voice activity detection [38]) or temporal windows. Then, existing transcripts or automatic speech recognition (ASR) are used to create an embedding for each segment based on methods like bags of words [39], word2vec [38]- [40], and TF-IDF [41].…”
Section: ) Audio-based Analysismentioning
confidence: 99%
See 1 more Smart Citation
“…Many recent works analyze the audio or audio transcripts of lecture videos with different objectives such as topic-wise segmentation of the lecture. The video is usually divided into small segments (e.g by using voice activity detection [38]) or temporal windows. Then, existing transcripts or automatic speech recognition (ASR) are used to create an embedding for each segment based on methods like bags of words [39], word2vec [38]- [40], and TF-IDF [41].…”
Section: ) Audio-based Analysismentioning
confidence: 99%
“…The video is usually divided into small segments (e.g by using voice activity detection [38]) or temporal windows. Then, existing transcripts or automatic speech recognition (ASR) are used to create an embedding for each segment based on methods like bags of words [39], word2vec [38]- [40], and TF-IDF [41]. Some methods also consider additional acoustic features [38], [40].…”
Section: ) Audio-based Analysismentioning
confidence: 99%
“…Em relação aos módulos, todos são embarcados em contêineres Docker 1 para facilitar a reprodutibilidade e a implantação de nossa proposta. Para implementar o algoritmo proposto por [Soares and Barrére 2019] foi necessária a instanciação de 7 módulos. A Figura 3 ilustra o esquema de comunicação em fila entre os módulos de arquitetura.…”
Section: Implementaçãounclassified
“…Como prova de conceito, implementamos o fluxo de um algoritmo de segmentação baseado em fala proposto anteriormente em [Soares and Barrére 2019] utilizando o Easy-Topic. Também, comparamos os resultados obtidos por nossa implementação com outros dois frameworks da literatura.…”
Section: Conclusão E Trabalhos Futurosunclassified
See 1 more Smart Citation