2013
DOI: 10.2516/ogst/2012079
|View full text |Cite
|
Sign up to set email alerts
|

An Optimization Strategy Based on the Maximization of Matching-Targets’ Probability for Unevaluated Results

Abstract: Re´sume´-Optimisation par maximisation de la probabilite´d'atteindre les cibles pour des re´sultats non e´value´s -La me´thode pre´sente´e dans cet article rentre dans le cadre de l'optimisation probabiliste classique. La nouveaute´consiste a`construire un processus Gaussien pour chaque re´sultat souhaite´(i.e. associe´a`chaque cible spe´cifie´e) et de les utiliser ensuite pour estimer les densite´s de probabilite´des re´sultats non e´value´s. Ces densite´s sont alors prises en compte dans le calcul de la dens… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 16 publications
0
1
0
Order By: Relevance
“…Proxy models, which are used to bypass the flow simulator, are a common simplification in uncertainty quantification, history matching, and probabilistic forecasting (Douarche et al, 2014;Feraille, 2013;Feraille and Marrel, 2012;Imrie and Macrae, 2016;Osterloh, 2008;Panjalizadeh et al, 2014;Scheidt et al, 2007;Touzani and Busby, 2014). However, multiple factors affect prediction accuracy of the proxy, which is not physics-based: (1) the high nonlinearity between input variables (reservoir, operational, and economic uncertainties) and output variables (production, injection, and economic forecasts) complicates proxy modeling, and (2) assumptions and approximations when modeling the proxy may introduce non-negligible errors (Trehan et al, 2017).…”
Section: Introductionmentioning
confidence: 99%
“…Proxy models, which are used to bypass the flow simulator, are a common simplification in uncertainty quantification, history matching, and probabilistic forecasting (Douarche et al, 2014;Feraille, 2013;Feraille and Marrel, 2012;Imrie and Macrae, 2016;Osterloh, 2008;Panjalizadeh et al, 2014;Scheidt et al, 2007;Touzani and Busby, 2014). However, multiple factors affect prediction accuracy of the proxy, which is not physics-based: (1) the high nonlinearity between input variables (reservoir, operational, and economic uncertainties) and output variables (production, injection, and economic forecasts) complicates proxy modeling, and (2) assumptions and approximations when modeling the proxy may introduce non-negligible errors (Trehan et al, 2017).…”
Section: Introductionmentioning
confidence: 99%