-Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases.In testing, a mean Dice similarity coefficient of 0.9834±0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781±0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors.Keywords: Brain extraction, skull stripping, patch-based segmentation, multi-resolution, MRI, BET ** Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
IntroductionBrain extraction (or skull stripping) is an important step in many neuroimaging analyses, such as registration, tissue classification, and segmentation. While methods such as the estimation of intensity normalization fields and registration do not require perfect brain masks, other methods such as measuring cortical thickness rely on very accurate brain extraction to work properly. For instance, failure to remove the dura may lead to an overestimation of cortical thickness (van der Kouwe et al., 2008), while removing part of the brain would lead to an underestimation. In cases of incorrect brain extraction, subjects may be excluded from further processing, a potentially expensive consequence for many studies. The solution of manually correcting the brain masks is a labour intensive and time-consuming task that is highly sensitive to inter-and intra-rater variability (Warfield et al., 2004).An accurate brain extraction method should exclude all tissues external to the brain, such as skull, dura, and eyes, without removing any part of the brain. The number of methods proposed to address the brain segmentation problem reflects the importance of accurate and robust brain extraction. During th...