Genetically encoded reporter circuits have been revolutionizing our ability to monitor, manipulate, and visualize specific cellular responses to a variety of environmental stimuli. However, the development of genetic circuits that enable both high throughput (HTP) application and laboratory automation remains challenging. In this report, we describe a novel dual-reporter circuit that utilizes a secretory Gaussia luciferase (Gluc) and a green fluorescent protein (GFP) for monitoring inflammatory signaling, a fundamental process in many life events. We designed and built this genetic circuit into a simple adeno-associated viral (AAV) vector, which is suitable for both simple transfection and efficient transduction protocols. We demonstrated high sensitivity and specificity of this new circuit and its ability to monitor a broad range of inflammatory response in various human cell models. Importantly, this novel system is simple, robust, and readily adaptable to HTP applications and laboratory automation including fluorescence activated cell sorting (FACS) and microplate reader analysis. By combining both GFP and Gluc in one genetic circuit, our new dualreporter circuit provides an easy and powerful tool for monitoring and quantifying inflammatory signals in various mammalian cells.