Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study focuses on the Optomechanical bichromatic wavelength switching system as an indirect two-color up-conversion process that relies on optical force and nanorod scattering effects. This system is used to control light coupling between four parallel optical waveguides made of silicon nitride (Si3N4) which form two identical parts. The parallel waveguides with 0.5 µm × 0.5 µm cross-section and 220 µm lengths suspended on a silica (SiO2) substrate embedded with the array of square silicon (Si) nanorods. By mid-IR plane wave illumination, as control light, with different intensities and different wavelengths on nanorods, scattering would increase and result in an improvement in attractive gradient optical force exerted on waveguides. Via bending waveguides toward each other, caused by optical gradient force, two different visible lights, as probe signals, propagating in the first waveguide of each section would couple to the adjacent waveguide. Simulation results reveal that when the distance between the parallel waveguides in the equilibrium position is 100 nm and the intensity of mid-IR light is 1.28 mW/µm 2 total coupling would occur in two situations: 1-when the control light is 4.5 µm, the probe light with 713 nm wavelength is transmitted to the output, 2-when the control light is 3 µm, the probe light with 609 nm wavelength is transmitted to the output. In the first case 1.92 pN/µm optical force is needed to bend each waveguide by 9 nm and in the second one, 1.28 pN/µm optical force is needed to bend each waveguide by 6 nm for total coupling. The efficiency of the coupled waveguides system is %88.6 for 609 nm probe light injection and %96.5 for 713 nm probe light injection.
This study focuses on the Optomechanical bichromatic wavelength switching system as an indirect two-color up-conversion process that relies on optical force and nanorod scattering effects. This system is used to control light coupling between four parallel optical waveguides made of silicon nitride (Si3N4) which form two identical parts. The parallel waveguides with 0.5 µm × 0.5 µm cross-section and 220 µm lengths suspended on a silica (SiO2) substrate embedded with the array of square silicon (Si) nanorods. By mid-IR plane wave illumination, as control light, with different intensities and different wavelengths on nanorods, scattering would increase and result in an improvement in attractive gradient optical force exerted on waveguides. Via bending waveguides toward each other, caused by optical gradient force, two different visible lights, as probe signals, propagating in the first waveguide of each section would couple to the adjacent waveguide. Simulation results reveal that when the distance between the parallel waveguides in the equilibrium position is 100 nm and the intensity of mid-IR light is 1.28 mW/µm 2 total coupling would occur in two situations: 1-when the control light is 4.5 µm, the probe light with 713 nm wavelength is transmitted to the output, 2-when the control light is 3 µm, the probe light with 609 nm wavelength is transmitted to the output. In the first case 1.92 pN/µm optical force is needed to bend each waveguide by 9 nm and in the second one, 1.28 pN/µm optical force is needed to bend each waveguide by 6 nm for total coupling. The efficiency of the coupled waveguides system is %88.6 for 609 nm probe light injection and %96.5 for 713 nm probe light injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.