Exposure of the yeast Saccharomyces cerevisiae to alkaline stress resulted in adaptive changes that involved remodeling the gene expression. Recent evidence suggested that the calcium-activated protein phosphatase calcineurin could play a role in alkaline stress signaling. By using an aequorin luminescence reporter, we showed that alkaline stress resulted in a sharp and transient rise in cytoplasmic calcium. This increase was largely abolished by addition of EGTA to the medium or in cells lacking Mid1 or Cch1, components of the high affinity cell membrane calcium channel. Under these circumstances, the alkaline response of different calcineurin-sensitive transcriptional promoters was also blocked. Therefore, exposure to alkali resulted in entry of calcium from the external medium, and this triggered a calcineurin-mediated response. The involvement of calcineurin and Crz1/Tcn1, the transcription factor activated by the phosphatase, in the transcriptional response triggered by alkalinization has been globally assessed by DNA microarray analysis in a time course experiment using calcineurin-deficient (cnb1) and crz1 mutants. We found that exposure to pH 8.0 increased at least 2-fold the mRNA levels of 266 genes. In many cases (60%) the response was rather early (peak after 10 min). The transcriptional response of 27 induced genes (10%) was reduced or fully abolished in cnb1 cells. In general, the response of crz1 mutants was similar to that of calcineurin-deficient cells. By analysis of a systematic deletion library, we found 48 genes whose mutation resulted in increased sensitivity to the calcineurin inhibitor FK506. Twenty of these mutations (42%) also provoked alkaline pH sensitivity. In conclusion, our results demonstrated that calcium signaling and calcineurin activation represented a significant component of the yeast response to environmental alkalinization.Calcium-mediated signaling mechanisms are used by virtually every eukaryotic cell to regulate a wide variety or cellular processes, including gene expression. Transient increases in cytosolic calcium results in activation of diverse enzymes, such as the protein phosphatase calcineurin. Calcineurin is a heterodimer of catalytic subunit and regulatory subunits. In the yeast Saccharomyces cerevisiae, the catalytic subunit is encoded by two genes, CNA1 and CNA2 (1), whereas a single gene, CNB1, encodes the regulatory subunit (2). Cells lacking the catalytic subunits, or the regulatory subunit, are deficient in calcineurin activity.Exposure of yeast cells to a number of signals, such as ␣-factor (3, 4), glucose (5), sphingosine (6), and certain stress conditions (7-9), triggers a rise in cytoplasmic calcium. This increase in calcium can be a consequence of external calcium influx or release from internal stores, such as the vacuole, and results in activation of calcineurin. For instance, hyperosmotic shock has been reported to provoke calcium release from vacuolar stores (8) through Yvc1, a member of the transient receptor potential channel family, and to trig...