Five populations of Culex pipiens collected in central Tunisia were evaluated for their susceptibility to temephos. The resistance level was high for samples # 5 (>50-fold), and low, not exceeding 4-fold in the other resistant samples. LC 50 showed the susceptibility of sample # 2. The CYP450 enzyme was found related to temephos resistance in three samples. In fact, the addition of Pb to temephos bioassays completely suppressed the resistance in samples # 1 (RR 50 =0.84, p>0.05, RSR=3.0) and 5 (RR 50 =1.5, p>0.05, RSR=37.1). The temephos resistance level of sample # 3 decreased slightly (RR=1.9, p<0.05, RSR=1.7). The biochemical assays detected elevated esterases in all studied samples with different frequencies to be involved the recorded resistance to temephos. However, synergists bioassays did not suggested any esterase activity. The insensitive AChE 1 could be responsible partly in the resistance to temephos insecticide (OP). In fact, Mortalities due to propoxur (< 25%) were recorded in two resistant samples and (>75%) were recorded in the most susceptible samples. There is an urgent need to replace the insecticide temephos for continued control of Culex pipiens in Tunisia.