Let D be an integral domain, X be an indeterminate over D, D[X] be the polynomial ring over D, and D(X) be the Nagata ring of D. Let [d] be the star operation on D[X], which is an extension of the d-operation on D as in [5, Theorem 2.3]. In this paper, we show that D is a sharp domain if and only if D[X] is a [d]-sharp domain, if and only if D(X) is a sharp domain.