Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Electric vehicles worldwide provide numerous key advantages in the energy sector. They are advantageous over fossil fuel vehicles in many aspects: for example, they consume no fuel, are economical, and only require charging the internal batteries, which power the motor for propulsion. Thus, due to their numerous advantages, research is necessary to improve the technological aspects that can enhance electric vehicles’ overall performance and efficiency. However, electric vehicle charging stations are the key hindrance to their adoption. Charging stations will affect grid stability and may lead to altering different parameters, e.g., power losses and voltage deviation when integrated randomly into the distribution system. The distributed generation, along with charging stations with the best location and size, can be a solution that mitigates the above concerns. Metaheuristic techniques can be used to find the optimal siting and sizing of distributed generations and electric vehicle charging stations. This review provides an exhaustive review of various methods and scientific research previously undertaken to optimize the placement and dimensions of electric vehicle charging stations and distributed generation. We summarize the previous work undertaken over the last five years on the multi-objective placement of distributed generations and electric vehicle charging stations. Key areas have focused on optimization techniques, technical parameters, IEEE networks, simulation tools, distributed generation types, and objective functions. Future development trends and current research have been extensively explored, along with potential future advancement and gaps in knowledge. Therefore, at the conclusion of this review, the optimization of electric vehicle charging stations and distributed generation presents both the practical and theoretical importance of implementing metaheuristic algorithms in real-world scenarios. In the same way, their practical integration will provide the transportation system with a robust and sustainable solution.
Electric vehicles worldwide provide numerous key advantages in the energy sector. They are advantageous over fossil fuel vehicles in many aspects: for example, they consume no fuel, are economical, and only require charging the internal batteries, which power the motor for propulsion. Thus, due to their numerous advantages, research is necessary to improve the technological aspects that can enhance electric vehicles’ overall performance and efficiency. However, electric vehicle charging stations are the key hindrance to their adoption. Charging stations will affect grid stability and may lead to altering different parameters, e.g., power losses and voltage deviation when integrated randomly into the distribution system. The distributed generation, along with charging stations with the best location and size, can be a solution that mitigates the above concerns. Metaheuristic techniques can be used to find the optimal siting and sizing of distributed generations and electric vehicle charging stations. This review provides an exhaustive review of various methods and scientific research previously undertaken to optimize the placement and dimensions of electric vehicle charging stations and distributed generation. We summarize the previous work undertaken over the last five years on the multi-objective placement of distributed generations and electric vehicle charging stations. Key areas have focused on optimization techniques, technical parameters, IEEE networks, simulation tools, distributed generation types, and objective functions. Future development trends and current research have been extensively explored, along with potential future advancement and gaps in knowledge. Therefore, at the conclusion of this review, the optimization of electric vehicle charging stations and distributed generation presents both the practical and theoretical importance of implementing metaheuristic algorithms in real-world scenarios. In the same way, their practical integration will provide the transportation system with a robust and sustainable solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.