2021
DOI: 10.1111/joes.12410
|View full text |Cite
|
Sign up to set email alerts
|

An Overview of Dynamic Model Averaging Techniques in Time‐series Econometrics

Abstract: Dynamic model averaging (DMA) has become a widely used estimation technique in macroeconomic applications. Since its introduction in econom(etr)ics by Gary Koop and Dimitris Korobilis in 2009, applications of DMA have increased in unimaginable ways. Besides applying the original (univariate) framework suggested by Koop and Korobilis on the data of interest, for example, the inflation rate of the country of choice or return on the rate of equity, practitioners have been able to use DMA-based techniques to exten… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
12
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 26 publications
(13 citation statements)
references
References 173 publications
(447 reference statements)
0
12
0
1
Order By: Relevance
“…Values of this parameter close to zero imply (extremely) large observational volatility. In turn, the parameter generates time variation in the full model set (Catania and Nonejad (2018); Nonejad (2021)). Values of this parameter close to zero induce (extremely) fast switches among models.…”
Section: Dynamic Model Averagingmentioning
confidence: 99%
See 1 more Smart Citation
“…Values of this parameter close to zero imply (extremely) large observational volatility. In turn, the parameter generates time variation in the full model set (Catania and Nonejad (2018); Nonejad (2021)). Values of this parameter close to zero induce (extremely) fast switches among models.…”
Section: Dynamic Model Averagingmentioning
confidence: 99%
“…3 For additional technical details and the multiple applications of DMA in macroeconomics forecasting, see alsoCatania and Nonejad (2018) andNonejad (2021).…”
mentioning
confidence: 99%
“…Muitas aplicac ¸ões do mundo real estão inseridas no contexto de séries temporais. Uma aplicac ¸ão bastante realizada e de grande interesse para a comunidade acadêmica e em geral é a predic ¸ão de séries temporais, que é utilizada em diversas áreas do conhecimento como em sistemas biológicos [2], em econometria [3], na teoria de sistemas de controle [4], meteorologia [5], entre outras. A natureza caótica de algumas séries temporais é uma complexidade que motiva o desenvolvimento de modelos matemáticos que sejam aptos a representar a dinâmica não linear [6].…”
Section: Introduc ¸ãOunclassified
“…(Catania & Nonejad, 2018;Nonejad, 2021). Values of this parameter close to zero induce (extremely) fast switches among models.…”
mentioning
confidence: 99%
“… For additional technical details and the multiple applications of DMA in macroeconomics forecasting, see also Catania and Nonejad (2018) and Nonejad (2021). …”
mentioning
confidence: 99%