From a hydrocarbon perspective, the Caney Shale has historically been evaluated as a sealing unit, which resulted in limited studies characterizing the rock properties of the Caney Shale and its suitability for hydraulic fracturing. The objective of our research is to help bridge the current knowledge gap through the integration of multiscale laboratory techniques and to characterize the macro- and microscale rock properties of the Caney Shale. We employed an integrated approach for the characterization of the Caney using 200 ft (61 m) of Caney core from a target well in southern Oklahoma. Core observation and petrographic analysis of thin sections were combined to characterize the general rock types and associated fabrics and textures. Mineralogical composition, pore system architecture, and rock fabric were analyzed using x-ray diffraction (XRD), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS), and focused ion beam (FIB)-SEM. In addition, rebound hardness and indentation testing were carried out to determine rock hardness (brittleness) and elasticity, respectively. With the integrated multiscale characterization, three mixed carbonate-siliciclastic rock types were identified — mudstone, calcareous siltstone, and silty carbonate — likely representing a spectrum of deposition from low to relatively high energy environments in the distal portions of a ramp system. Silty carbonate contains mostly interparticle pores. The calcareous siltstones and silty mudstones contain a combination of organic matter pores and interparticle pores. Each of the rock types shows unique mineralogical compositions based on XRD. The mudstone lithofacies has the highest clay content and the least carbonate content. Calcareous siltstones show moderate carbonate and clay content. Silty carbonate indicates the highest carbonate content with the least clay content. In an order of mudstone, calcareous siltstone, and silty carbonate, rebound hardness and Young’s modulus show an increasing trend. As a result of rock-fluid interactions, there are potential scaling reactions during completion and production that could ultimately affect permeability and production rates. Overall, the proposed multiscale integration approach is critical for the geologic characterization of most rocks. However, in shale reservoirs dominated by microporosity and microstructure where engineered fractures are expected to provide permeability at a reservoir scale, successful integration is essential. An optimized, integrated geological characterization of the Caney Shale that is well aligned with the engineering designs in drilling, completing, and producing wellbores will ultimately lead to optimal production while providing safe and environmentally responsible operations.