Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background/Objectives: Drug–polymer interactions and miscibility promote the formation and performance of amorphous solid dispersions (ASDs) of poorly soluble drugs for improved oral bioavailability. The objective of this study was to employ drug–polymer interaction calculations and small-scale experimental characterization to screen polymers for potential ASDs of ritonavir. Methods: Seven polymers across four polymer types were screened as follows: an enteric one (EudragitS100), amphiphilic ones (HPMCAS-L, HPMCAS-H, and their 1:1 combination), hydrophilic ones (PEG-6000, PVP-VA), and a surfactant (Soluplus), including PVP-VA as a positive control, as the commercial ASD employs PVP-VA. Drug–polymer interaction calculations were performed for Hansen solubility parameter, Flory–Huggins parameter, and glass transition temperature. ASDs were prepared via film casting. Experimental characterizations included drug solubility in polymer solutions, polymer inhibition of drug precipitation, polarized light microscopy, differential scanning calorimetry, solubilization capacity, and dissolution studies. Results: HPMCAS-L, HPMCAS L:H, and Soluplus, along with the positive control PVP-VA, were identified as polymers for potential ASDs of ritonavir, with HPMCAS-L and PVP-VA being preferable. HPMCAS-L and the positive control PVP-VA were always viable for both 20% and 40% drug loads across all tests. Films with each of these four polymers showed improved dissolution compared to amorphous ritonavir without polymer. Drug–polymer interaction calculations anticipated the unfavorable small-scale experimental results for PEG-6000 and EudragitS100. Conclusion: Overall, the results contribute towards a resource-sparing approach to identify polymers for ASDs.
Background/Objectives: Drug–polymer interactions and miscibility promote the formation and performance of amorphous solid dispersions (ASDs) of poorly soluble drugs for improved oral bioavailability. The objective of this study was to employ drug–polymer interaction calculations and small-scale experimental characterization to screen polymers for potential ASDs of ritonavir. Methods: Seven polymers across four polymer types were screened as follows: an enteric one (EudragitS100), amphiphilic ones (HPMCAS-L, HPMCAS-H, and their 1:1 combination), hydrophilic ones (PEG-6000, PVP-VA), and a surfactant (Soluplus), including PVP-VA as a positive control, as the commercial ASD employs PVP-VA. Drug–polymer interaction calculations were performed for Hansen solubility parameter, Flory–Huggins parameter, and glass transition temperature. ASDs were prepared via film casting. Experimental characterizations included drug solubility in polymer solutions, polymer inhibition of drug precipitation, polarized light microscopy, differential scanning calorimetry, solubilization capacity, and dissolution studies. Results: HPMCAS-L, HPMCAS L:H, and Soluplus, along with the positive control PVP-VA, were identified as polymers for potential ASDs of ritonavir, with HPMCAS-L and PVP-VA being preferable. HPMCAS-L and the positive control PVP-VA were always viable for both 20% and 40% drug loads across all tests. Films with each of these four polymers showed improved dissolution compared to amorphous ritonavir without polymer. Drug–polymer interaction calculations anticipated the unfavorable small-scale experimental results for PEG-6000 and EudragitS100. Conclusion: Overall, the results contribute towards a resource-sparing approach to identify polymers for ASDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.