La tesi que es presenta tracta l’estudi cinemàtic i dinàmic de la marxa humana mitjançant tècniques de dinàmica de sistemes multisòlid. Per a aquest propòsit, s’utilitzen dos models biomecànics: un model pla format per 11 segments i 14 graus de llibertat i un model tridimensional format per 18 segments i 57 graus de llibertat. La formulació dinàmica multisòlid ha estat desenvolupada en coordenades mixtes (naturals
i relatives). La marxa de l’individu s’enregistra al laboratori utilitzant un sistema de captura del moviment mitjançant el qual s’obté la posició de cadascun dels 37 marcadors situats sobre el cos del subjecte. Les dades de posició es filtren utilitzant un algorisme basat en el singular spectrum analysis (SSA) i les coordenades naturals del model es calculen mitjançant relacions algebraiques entre les posicions dels marcadors. Posteriorment, un procés de consistència cinemàtica assegura les restriccions de sòlid rígid. El processament cinemàtic continua amb l’aproximació de les posicions mitjançant corbes B-spline d’on se n’obtenen, per derivació analítica, els valors de velocitat i acceleració.
En una anàlisi dinàmica inversa de la marxa humana, s’acostumen a utilitzar com a dades d’entrada els paràmetres antropomètrics (geomètrics i inercials) dels segments, les dades cinemàtiques i les mesures de les plaques de força. En contraposició al que fan la majoria d’autors, en aquesta tesi, les mesures de les plaques de força no són utilitzades directament en l’anàlisi sinó que només s’usen per solucionar el problema del repartiment del torsor resultant de les forces de contacte durant la fase de doble suport. En aquesta fase, els dos peus es recolzen sobre el terra i les mesures cinemàtiques són insuficients per determinar el torsor en cada peu. El nou mètode de
repartiment que es proposa (anomenat contact force plate sharing, CFP) és una de les aportacions de la tesi i destaca pel fet que permet determinar un conjunt de forces i moments dinàmicament consistents amb el model biomecànic, sense haver de modificar-ne les coordenades cinemàtiques ni afegir forces o moments residuals en algun dels segments. Encara dins l’àmbit de l’estudi dinàmic invers, s’ha analitzat la sensitivitat dels parells articulars a errors comesos en estimar els paràmetres antropomètrics, a errors que poden contenir les mesures de les plaques de força i a errors que es poden cometre en el processament cinemàtic de les mesures. L’estudi permet concloure que els resultats són molt sensibles als errors cinemàtics i a les forces mesurades per les plaques, sent els errors en els paràmetres antropomètrics menys influents.
La tesi també presenta un nou model tridimensional de contacte peu-terra basat en el contacte esfera-pla i els seus paràmetres s’estimen mitjançant dos enfocaments diferents basats en tècniques d’optimització. El model s’utilitza com un mètode alternatiu per solucionar el problema del repartiment durant la fase de doble suport en dinàmica inversa, i també s’utilitza en simulacions de dinàmica directa per estimar les forces de contacte entre el model biomecànic i el seu entorn. En l’anàlisi dinàmica directa és necessària la implementació d’un controlador que està basat, en aquest cas, en el filtre de Kalman estès.
Les contribucions més importants de la tesi, en el cas de l’anàlisi dinàmica inversa, es centren en el mètode CFP i en l’ús del model de contacte per solucionar el repartiment de forces de contacte en la fase de doble suport. Referent a l’anàlisi de la influència dels errors en les dades d’entrada del problema dinàmic invers, la modelització estadística dels errors conjuntament amb la pertorbació conjunta de més d’un paràmetre antropomètric a la vegada (mantenint constant l’alçada i el pes de la persona) és també una novetat.
Per altra banda, el model de contacte presentat és també una contribució original. En l’estat de l’art actual no es troben models que usin dades reals capturades al laboratori i que a la vegada s’utilitzin per solucionar el problema de repartiment en el doble suport i per simular el contacte peu-terra en una anàlisi dinàmica directa. Finalment, el fet de desenvolupar un model que s’utilitzi tant per a l’anàlisi dinàmica
directa com inversa és també una de les aportacions d’aquesta tesi. Tot i que les dues anàlisis, per separat, són temes de recerca comuns en l’àmbit de la Biomecànica, es troben a faltar estudis que comprovin la validesa dels resultats que se n’obtenen. En aquesta tesi, els resultats de la dinàmica inversa s’han utilitzat com a dades d’entrada de l’anàlisi dinàmica directa, el resultat de la qual (el moviment) ha pogut ser comparat amb el que s’obté de la captura del laboratori (entrada de la dinàmica inversa). D’aquesta manera, el cercle es tanca i es pot verificar la validesa tant dels models com dels resultats obtinguts.
This thesis presents the kinematic and dynamic study of human motion by means of multibody system dynamics techniques.
For this purpose, two biomechanical models are used: a 2D model formed by 11 segments with 14 degrees of freedom, and a 3D model that consists of 18 segments with 57 degrees of freedom. The movement of the subject is recorded in the laboratory using a motion capture system that provides the position along time of 37 markers attached on the body of the subject. Position data are filtered using an algorithm based on singular spectrum analysis (SSA) and the natural coordinates of the model are calculated using algebraic relations between the
marker positions. Afterwards, a kinematic procedure ensures the kinematic consistency and the data processing continues with the approximation of the position histories using B-spline curves and obtaining, by analytical derivation, the velocity and acceleration values.
This information is used as input of an inverse dynamic analysis. Differing to most published works, in this thesis the force plates measurements are not used directly as inputs of the analysis. When both feet contact the ground, kinematic measurements are insufficient to determine the individual wrench at each foot. One of the contributions of the thesis is a new strategy that is proposed to solve the this indeterminacy (called corrected force plate sharing, CFP) based on force plates data. Using this method, a set of two contact wrenches dynamically consistent with the movement are obtained with no need neither to add residual wrenches nor to modify the original motion.
Also in the IDA field, the sensitivity of the joint torques to errors in the anthropometric parameters, in the force plate measurements and to errors committed during the kinematic data processing is studied. The analysis shows that the results are very sensitive to errors in force measurements and in the kinematic processing, being the errors in the body segment parameters less influential.
A new 3D foot-ground contact model is presented and its parameters are estimated using optimization techniques. The model is used as an alternative method to solve the mentioned sharing problem during the double support phase and it is also used, in a forward dynamic analysis, to estimate the contact forces between the biomechanical model and its environment. The forward dynamic simulation requires the implementation of a controller that is based, in this case, on the extended Kalman filter. The most important contributions of the thesis in IDA are focused on the CFP sharing method and regarding the analysis of the influence of errors in input data on the inverse dynamics results, the statistical modelling of the uncertainties together with the perturbation of more than one parameter at same time (remaining height and weight as a constant parameters) is also new in the literature. Moreover, the presented foot-ground contact model is also original. In the current state of the art, there are no models that use real data captured in the laboratory to solve the contact wrench sharing problem during the double support phase. Furthermore, there are few studies simulating the foot-ground interaction in a forward dynamic analysis using a continuous foot-ground contact model.
Finally, developing a model that is used for both forward and inverse dynamic analysis is a relevant aspect of the methodology used. Although the two approaches separately are common research topics in the field of biomechanics, a small number of studies prove the validity of the obtained results. In this thesis, the results of the inverse dynamics are used as input data for the forward dynamic analysis, and the results of the latter (the motion) have been compared with the motion capture in the laboratory (input of the inverse dynamics analysis). Thus, the circle has been closed which allows us to validate the accuracy of both the models and the obtained results.