Extensive and intensive green roofs and vegetated walls should be used to improve the livability in cities, especially in densely built-up context, in order to optimize their contribution on energy savings and greenhouse gas emissions, improving thermal comfort conditions and ensuring a greater storm-water runoff. The aim of this study is to evaluate the effect of urban morphology and to quantify the impact of green surfaces and plants on outdoor thermal comfort conditions. The analysis was applied to six neighborhoods in the city of Turin, identified as typical districts with different building geometries, urban contexts and green presence. The outdoor thermal comfort conditions were assessed calculating a set of indicators, such as the predicted mean vote and the physiological equivalent temperature, with the support of ENVI-met tool. Retrofit scenarios were hypothesized, and outdoor thermal comfort conditions were investigated before and after the installation of green roofs and vegetated areas. The result allowed to understand how thermal comfort vary, considering the building geometry, urban morphology, and green areas in different zones of the city of Turin. By analyzing neighborhoods, it is possible to identify the optimal built environment that ensure better thermal comfort conditions. These models and tools could support urban planners in defining the best measures to improve the liveability and quality in the built environment considering local constraints and the real characteristics of the territory or in designing new neighborhoods.