Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Himalayan foreland in N Pakistan, dissected by Main Frontal Thrust (MFT) and Main Boundary Thrust (MBT) contains spectacular salients and syntaxes. The lateral (N-S) boundaries between these salients and syntaxes around Kalabagh city and east-southeast of Islamabad were believed to host deep-seated lateral ramps with strike slip movements. However, seismic data in these two sectors suggest that there are N-S trending folds and locally east- or west-vergent thrusts that affect the Paleozoic-Paleogene cover of the Indian shield, as well as the Miocene-Pliocene molasse sediments. The proposed lateral ramps cannot be followed on the seismic and on maps either; instead, both maps and seismic data suggest folding, often on a regional scale of harder Paleo-Mesozoic-Paleogene and softer Oligo-Miocene-Pilo-Pleistocene cover. The NE corner of Surghar range is proposed to be formed of relaying thrust sheets with emergent heads composed of Paleozoic-Paleogene and its slightly detached Miocene molasse. These relaying imbricates are taken in a southward flexure generated by a major right lateral shear of a wide zone, where transpressive Riedel shears, en echelon anticlines and southwards flexed earlier thrust faults are the main elements (but a single, through-going Kalabagh fault is missing). The generation of mapped N-S trending folds and east-vergent thrusts preceded the formation of the wide shear zone and southwards flexing.Hazara syntaxis is interpreted as a major antiform that re-folded MBT and Panjal thrust around Oligo-Miocene molasse, itself forming an antiform (BOSSART ET AL. 1988). In our model we propose that the west-vergent Balakot thrust and deeper blind thrusts are in the core of this antiform. In the southern continuation we propose that folds in Miocene molasse continue from eastern Potwar region to western Kashmir and there appears no major break. These structures are also re-folded in a major antiform with N-S axial trend. Map analysis also suggests that N-S trending folds bending earlier main thrusts are occurring in a wide area south of the Indus-Tsangpo suture.Several independent geological and geophysical observations including mapping, seismic analysis, earlier measurements of strain axes and of paleomagnetic declinations suggest that the salients and syntaxes may have been much more linear in the past (although a total linearity is not realistic). It is proposed that the present-day undulating pattern may have been generated by N-S trending folds due to general (and episodic) E-W shortening. If the main fault zones were more linear, the relay pattern along their segments suggests a left lateral shear component along MBT and a mixed, locally left, locally right lateral component along MFT. Earlier (ZEITLER 1985) and now provided low temperature thermochronological ages strongly suggest a rather general episode of E-W shortening between 4-5 Ma for the whole northern Indian margin. However, there should have been original transversal dome formation as early as Oligocene (DIPIETRO ET AL. 2008). It is also clear that longer N-S shortening and shorter E-W shortening episodes should alternate eventually in a very short time frame, since earthquake focal mechanisms (LISA AND KHWAJA 2004, BURG ET AL. 2005) suggest the coexistence of E-W compression and NW-SE compression in Potwar.There are several potential explanations for generating E-W shortening and related structures in a general N-S shortening regime. Possibilities range from fault terminations of thrust faults at high angles in a particular zone (TREOLAR ET AL. 1992) to en echelon folding along a major right lateral E-W fault zone. However, we speculate that E-W shortening could be much more general, suggesting a mechanism that affects the whole of Indian plate. Possibly the best explanation is given by analogue models (REPLUMAZ ET AL. 2012) proposing major, slightly convergent confining boundaries. If applied to the northwards advance of India, the northwards converging boundaries generate secondary E-W shortening and east-or west-vergent orogens parallel to these boundaries.
The Himalayan foreland in N Pakistan, dissected by Main Frontal Thrust (MFT) and Main Boundary Thrust (MBT) contains spectacular salients and syntaxes. The lateral (N-S) boundaries between these salients and syntaxes around Kalabagh city and east-southeast of Islamabad were believed to host deep-seated lateral ramps with strike slip movements. However, seismic data in these two sectors suggest that there are N-S trending folds and locally east- or west-vergent thrusts that affect the Paleozoic-Paleogene cover of the Indian shield, as well as the Miocene-Pliocene molasse sediments. The proposed lateral ramps cannot be followed on the seismic and on maps either; instead, both maps and seismic data suggest folding, often on a regional scale of harder Paleo-Mesozoic-Paleogene and softer Oligo-Miocene-Pilo-Pleistocene cover. The NE corner of Surghar range is proposed to be formed of relaying thrust sheets with emergent heads composed of Paleozoic-Paleogene and its slightly detached Miocene molasse. These relaying imbricates are taken in a southward flexure generated by a major right lateral shear of a wide zone, where transpressive Riedel shears, en echelon anticlines and southwards flexed earlier thrust faults are the main elements (but a single, through-going Kalabagh fault is missing). The generation of mapped N-S trending folds and east-vergent thrusts preceded the formation of the wide shear zone and southwards flexing.Hazara syntaxis is interpreted as a major antiform that re-folded MBT and Panjal thrust around Oligo-Miocene molasse, itself forming an antiform (BOSSART ET AL. 1988). In our model we propose that the west-vergent Balakot thrust and deeper blind thrusts are in the core of this antiform. In the southern continuation we propose that folds in Miocene molasse continue from eastern Potwar region to western Kashmir and there appears no major break. These structures are also re-folded in a major antiform with N-S axial trend. Map analysis also suggests that N-S trending folds bending earlier main thrusts are occurring in a wide area south of the Indus-Tsangpo suture.Several independent geological and geophysical observations including mapping, seismic analysis, earlier measurements of strain axes and of paleomagnetic declinations suggest that the salients and syntaxes may have been much more linear in the past (although a total linearity is not realistic). It is proposed that the present-day undulating pattern may have been generated by N-S trending folds due to general (and episodic) E-W shortening. If the main fault zones were more linear, the relay pattern along their segments suggests a left lateral shear component along MBT and a mixed, locally left, locally right lateral component along MFT. Earlier (ZEITLER 1985) and now provided low temperature thermochronological ages strongly suggest a rather general episode of E-W shortening between 4-5 Ma for the whole northern Indian margin. However, there should have been original transversal dome formation as early as Oligocene (DIPIETRO ET AL. 2008). It is also clear that longer N-S shortening and shorter E-W shortening episodes should alternate eventually in a very short time frame, since earthquake focal mechanisms (LISA AND KHWAJA 2004, BURG ET AL. 2005) suggest the coexistence of E-W compression and NW-SE compression in Potwar.There are several potential explanations for generating E-W shortening and related structures in a general N-S shortening regime. Possibilities range from fault terminations of thrust faults at high angles in a particular zone (TREOLAR ET AL. 1992) to en echelon folding along a major right lateral E-W fault zone. However, we speculate that E-W shortening could be much more general, suggesting a mechanism that affects the whole of Indian plate. Possibly the best explanation is given by analogue models (REPLUMAZ ET AL. 2012) proposing major, slightly convergent confining boundaries. If applied to the northwards advance of India, the northwards converging boundaries generate secondary E-W shortening and east-or west-vergent orogens parallel to these boundaries.
The Palaeocene–Eocene boundary (PEB) interval has been recognized in the Patala Formation, Nammal Gorge Section, Pakistan using lithostratigraphy, stable carbon isotope stratigraphy and integrated biostratigraphy. Four distinct lithological units are identified in the Patala Formation in stratigraphic order from bottom to top; unit‐1 to unit‐4. The top of unit‐3 hosts three closely spaced unconformities demarcated as U1, U2, and U3. The PEB interval is represented by a negative shift of 1.61‰ in δ13CV‐PDB representing the carbon isotopic excursion (CIE) in unit‐2. Based on the encountered foraminifera, dinocysts, and calcareous nannoplanktons, the following biozones are identified across the PEB; two larger benthonic foraminiferal (LBF) zones (SBZ4 and SBZ5), the zonal boundary slightly postdating the CIE, two smaller benthonic foraminiferal zones (BB1 and BB2), three planktonic foraminiferal zones (P4/P5 + E1), four dinocysts zones (Pak‐DV, Pak‐DVI, Pak‐DVII, Pak‐DVIII), and two calcareous nannoplankton subzones (NP9a and NP9b). The following protist, dinocyst and calcareous nannoplanktons encountered in the studied interval advocates for the placement of the possible PEB at the level between samples NAM‐SH‐07 and 08; 1—presence of the smaller benthonic foraminifera Angulogavelinella avnimelechi diagnostic of the base of the CIE and the benthonic extinction event (BEE) Tethys wide, 2—presence of the cosmopolitan and the PEB diagnostic dinocyst species ‘Axiodinium augustum’, 3—presence of the PEB diagnostic Rhomboaster‐Discoaster calcareous nannoplankton assemblage. The LBF species Alveolina vredenburgi [a marker species of the Larger Foraminiferal Turnover (LFT) associated with the Palaeocene Eocene Thermal Maximum (PETM) and PEB in western Tethys] occurs slightly above the onset of the CIE. Previously reported compositional change in the LBF assemblage from the Salt Range [i.e. the replacement of the Palaeocene orbitoidiform LBF (Setia and Orbitosiphon) by the Eocene LBF (Orthophragminids, Alveolina, Nummulites and Assilina)] also postdates the PEB interval here. The late appearance of Alveolina vredenburgi and the compositional change in the LBF after the onset of the CIE are attributed to the facies variation across the PEB reflecting fluctuating depositional environment due to the active tectonic across this interval. This fluctuation is evident from the smaller benthonic and planktonic foraminiferal dominating assemblages in unit‐2 representing bathyal settings followed by LBF dominating unit‐3 representing shallow carbonate platform settings. The change in LBF assemblage closely resembles the well‐known LFT associated with the PETM as well as the carbonate platform stage III and the PEB reported from other Tethyan sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.