This review critically evaluates the recent advancements in graphene dopants for electrocatalytic quantification of small molecules and ions. Emphasizing the enhanced catalytic activity and specificity of doped graphene, the paper delves into the various doping methods, ranging from chemical to physical techniques. It presents a detailed analysis of the mechanisms underlying graphene-based electrocatalysis and its applications in environmental monitoring, health care, and pharmaceuticals. The review also addresses challenges such as the reproducibility and stability of doped graphene, suggesting future research directions. By summarizing the latest findings, this review aims to elucidate the role of doped graphene in improving the sensitivity and selectivity of electrocatalytic processes, bridging the gap between research and practical use.