Glioblastoma (GBM) is the most lethal primary brain tumor of the central nervous system in adults. Despite advances in surgical and medical neuro-oncology, the median survival is about 15 months. For this reason, initial diagnosis, prognosis, and targeted therapy of GBM represent very attractive areas of study. Aptamers are short three-dimensional structures of single-stranded nucleic acids (RNA or DNA), identified by an in vitro process, named systematic evolution of ligands by exponential enrichment (SELEX), starting from a partially random oligonucleotide library. They bind to a molecular target with high affinity and specificity and can be easily modified to optimize binding affinity and selectivity. Thanks to their properties (low immunogenicity and toxicity, long stability, and low production variability), a large number of aptamers have been selected against GBM biomarkers and provide specific imaging agents and therapeutics to improve the diagnosis and treatment of GBM. However, the use of aptamers in GBM diagnosis and treatment still represents an underdeveloped topic, mainly due to limited literature in the research world. On these bases, we performed a systematic review aimed at summarizing current knowledge on the new promising DNA and RNA aptamer-based molecules for GBM diagnosis and treatment. Thirty-eight studies from 2000 were included and investigated. Seventeen involved the use of aptamers for GBM diagnosis and 21 for GBM therapy. Our findings showed that a number of DNA and RNA aptamers are promising diagnostic and therapeutic tools for GBM management.