In Mycobacterium tuberculosis (Mtb), damage-induced mutagenesis is dependent on the C-family DNA polymerase, DnaE2. Included with dnaE2 in the Mtb SOS regulon is a putative operon comprising Rv3395c, which encodes a protein of unknown function restricted primarily to actinomycetes, and Rv3394c, which is predicted to encode a Y-family DNA polymerase. These genes were previously identified as components of an imuA-imuB-dnaE2-type mutagenic cassette widespread among bacterial genomes. Here, we confirm that Rv3395c (designated imuA′) and Rv3394c (imuB) are individually essential for induced mutagenesis and damage tolerance. Yeast two-hybrid analyses indicate that ImuB interacts with both ImuA′ and DnaE2, as well as with the β-clamp. Moreover, disruption of the ImuB-β clamp interaction significantly reduces induced mutagenesis and damage tolerance, phenocopying imuA′, imuB, and dnaE2 gene deletion mutants. Despite retaining structural features characteristic of Y-family members, ImuB homologs lack conserved active-site amino acids required for polymerase activity. In contrast, replacement of DnaE2 catalytic residues reproduces the dnaE2 gene deletion phenotype, strongly implying a direct role for the α-subunit in mutagenic lesion bypass. These data implicate differential protein interactions in specialist polymerase function and identify the split imuA′-imuB/dnaE2 cassette as a compelling target for compounds designed to limit mutagenesis in a pathogen increasingly associated with drug resistance. (1), a Cfamily DNA polymerase implicated in error-prone bypass of DNA lesions. Loss of DnaE2 activity renders Mtb hypersensitive to DNA damage and eliminates induced mutagenesis. Moreover, dnaE2 deletion attenuates virulence and reduces the frequency of drug resistance in vivo. Mtb contains two DnaE-type polymerases; the other, DnaE1, provides essential, high-fidelity replicative polymerase function (1). However, the basis for the functional specialization of the DnaE subunits remains unclear (2, 3). Although structural determinants such as active-site architecture contribute significantly to inherent fidelity, it is possible that differential interactions with other DNA metabolic proteins modulate polymerase function.Bacterial genomes containing a DnaE2-type DNA polymerase almost invariably encode a homolog of ImuB (4-6), a putative Yfamily polymerase that is usually present in a LexA-regulated imuA-imuB-dnaE2 gene cassette (5). In Caulobacter crescentus, both ImuB and ImuA are required for induced mutagenesis and damage tolerance (6) whereas plasmid-encoded DnaE2 and ImuB mediate UV-induced mutagenesis in Deinococcus deserti (7). Although distributed widely across the bacterial domain, the imuA-imuB-dnaE2 cassette is not found in organisms possessing umuDC homologs (5). This suggests that the encoded proteins perform an analogous function to DNA polymerase V (8), the Y-family member required for damage-induced mutagenesis in Escherichia coli (9).Mtb contains a putative SOS-inducible operon, Rv3395c-Rv3394c (1, 10), locat...