In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s, t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time.We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but each biconnected component is series-parallel.