Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field. transmission system topologies can be minimized by using the interspersed sensors for the collection of voltage and current signals. The second limitation is the lack of computational capability and communication. Synchronized global positioning system (GPS) sampling and high-speed broadband communications for IEDs in power grids are proposed in [8]. These technical advancements assure the quick response to faulty scenarios and the effective functioning of online monitoring mechanisms based on sensor networks. The availability of high-performance computing solutions gives provision to the implementation of higher computation complexity methods [7].Short circuit faults are more likely to appear in power systems (PS) than the series faults, break in the path of current. Shunt faults result in catastrophes and leave hazardous effects on PS. Short circuit faults can be divided into symmetrical and asymmetrical faults and further classification is presented in Figure 1 for the three-phase system [11].