Monitoring plasma concentrations of β-lactam antibiotics is crucial, particularly in critically ill patients, where variations in concentrations can lead to treatment failure or adverse events. Standardized antimicrobial regimens may not be effective for all patients, especially in special groups with altered physiological parameters. Pharmacokinetic/pharmacodynamic (PK/PD) studies highlight the time-dependent antibacterial activity of these antibiotics, emphasizing the need for personalized dosing. Therapeutic drug monitoring (TDM) is essential, requiring rapid and accurate analytical methods for precise determination of drugs in biological material (typically plasma or serum). This study presents a novel capillary zone electrophoresis–tandem mass spectrometry (CZE-MS/MS) method designed for the simultaneous quantification of five penicillin antibiotics, two cephalosporins, one carbapenem, and two β-lactamase inhibitors in a single run. The method involves a simple sample pretreatment—precipitation with organic solvent—and has a run time of 20 min. Optimization of CZE separation conditions revealed that 20 mM ammonium hydrogen carbonate (NH4HCO3) serves as the optimal background electrolyte (BGE). Positive electrospray ionization (ESI) mode, with isopropyl alcohol (IP)/10 mM ammonium formate water solution (50/50, v/v) as the sheath liquid, was identified as the optimal condition for MS detection. Method validation according to the Food and Drug Administration (FDA) guideline for development of bioanalytical methods demonstrated satisfactory selectivity, linearity, recovery, robustness, and stability. The method’s practicality was evaluated using the Blue Applicability Grade Index (BAGI), yielding a score of 77.5. Moreover, the greenness of the proposed method was evaluated by two commonly used metric tools—Analytical GREEnness (AGREE) and Green Analytical Procedure Index (GAPI). The developed CZE-MS/MS method offers a practical and reliable approach for quantifying a broad spectrum of β-lactam antibiotics in plasma. Its ability to simultaneously quantify multiple analytes in a single run, coupled with a straightforward sample pretreatment, positions it as a valuable and prospective tool for TDM in critically ill patients.