The wireless sensor nodes used in a growing number of remote sensing applications are deployed in inaccessible locations or are subjected to severe energy constraints. Audio-based sensing offers flexibility in node placement and is popular in low-power schemes. Thus, in this paper, a node architecture with low power consumption and in-the-field reconfigurability is evaluated in the context of an acoustic vehicle detection and classification (hereafter “AVDC”) scenario. The proposed architecture utilizes an always-on field-programmable analog array (FPAA) as a low-power event detector to selectively wake a microcontroller unit (MCU) when a significant event is detected. When awoken, the MCU verifies the vehicle class asserted by the FPAA and transmits the relevant information. The AVDC system is trained by solving a classification problem using a lexicographic, nonlinear programming algorithm. On a testing dataset comprising of data from ten cars, ten trucks, and 40 s of wind noise, the AVDC system has a detection accuracy of 100%, a classification accuracy of 95%, and no false alarms. The mean power draw of the FPAA is 43 μ W and the mean power consumption of the MCU and radio during its validation and wireless transmission process is 40.9 mW. Overall, this paper demonstrates that the utilization of an FPAA-based signal preprocessor can greatly improve the flexibility and power consumption of wireless sensor nodes.