In order to investigate the aerodynamic interference characteristics of tandem rotor, this paper simulates the hovering flow field of single rotor and tandem rotor based on the dynamic structure overset grid method and unsteady Navier-Stokes equations in computational fluid dynamics (CFD). In the study of hover state of single rotor with twist, the trajectory of the blade vortex and the change pattern are briefly analyzed. Subsequently, the flow field disturbance of tandem rotor, the vortex structure, the pull coefficient and the downwash flow are investigated. The results show that there is obvious blade vortex interference in the overlapping area of the tandem rotor, where the downwash flow reduces the effective angle of attack of the blade and thus has a significantly effect on the pull coefficient. The rotor is less disturbed when it is far from the overlapping area, and the tension coefficient does not change significantly. After integrating the pull coefficient of the upper and lower rotors in one cycle, it was found that the loss of pull coefficient of the two rotors reached 5.7% and 10.7% respectively, which proved that the aerodynamic interference between the tandem rotor in hovering condition had an important effect on the aerodynamic performance of the vehicle.