2021
DOI: 10.1007/978-981-16-1103-2_25
|View full text |Cite
|
Sign up to set email alerts
|

An Unsupervised Approach for Estimating Depth of Outdoor Scenes from Monocular Image

Abstract: Majority of the existing deep learning based depth estimation approaches employed for finding depth from monocular image need very accurate ground truth depth information to train a supervised decision framework. However, it is not always possible to get an accurate depth information particularly for diverse outdoor scenes. To address this, a convolutional network architecture is proposed, which comprises of two encoder-decoders for utilizing stereo matching criterion for training. The image reconstruction err… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?