Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Human Activity Recognition (HAR) from video data collections is the core application in vision tasks and has a variety of utilizations including object detection applications, video-based behavior monitoring, video classification, and indexing, patient monitoring, robotics, and behavior analysis. Although many techniques are available for HAR in video analysis tasks, most of them are not focusing on behavioral analysis. Hence, a new HAR system analysis the behavioral activity of a person based on the deep learning approach proposed in this work. The most essential aim of this work is to recognize the complex activities that are useful in many tasks that are based on object detection, modelling of individual frame characteristics, and communication among them. Moreover, this work focuses on finding out the human actions from various video resolutions, invariant human poses, and nearness of multi objects. First, we identify the key and essential frames of each activity using histogram differences. Secondly, Discrete Wavelet Transform (DWT) is used in this system to extract coefficients from the sequence of key-frames where the activity is localized in space. Finally, an Adaptive Weighted Flow Net (AWFN) algorithm is proposed in this work for effective video activity recognition. Moreover, the proposed algorithm has been evaluated by comparing it with the existing Visual Geometry Group (VGG-16) convolution neural networks for making performance comparisons. This work focuses on competent deep learning-based feature extraction to discriminate the activities for performing the classification accuracy. The proposed model has been evaluated with VGG-16 using a combination of regular UCF-101 activity datasets and also in very challenging Low-quality videos such as HMDB51. From these investigations, it is proved that the proposed AWFN approach gives higher detection accuracy of 96%. It is approximately 0.3% to 7.88% of higher accuracy than state-of-art methods.
Human Activity Recognition (HAR) from video data collections is the core application in vision tasks and has a variety of utilizations including object detection applications, video-based behavior monitoring, video classification, and indexing, patient monitoring, robotics, and behavior analysis. Although many techniques are available for HAR in video analysis tasks, most of them are not focusing on behavioral analysis. Hence, a new HAR system analysis the behavioral activity of a person based on the deep learning approach proposed in this work. The most essential aim of this work is to recognize the complex activities that are useful in many tasks that are based on object detection, modelling of individual frame characteristics, and communication among them. Moreover, this work focuses on finding out the human actions from various video resolutions, invariant human poses, and nearness of multi objects. First, we identify the key and essential frames of each activity using histogram differences. Secondly, Discrete Wavelet Transform (DWT) is used in this system to extract coefficients from the sequence of key-frames where the activity is localized in space. Finally, an Adaptive Weighted Flow Net (AWFN) algorithm is proposed in this work for effective video activity recognition. Moreover, the proposed algorithm has been evaluated by comparing it with the existing Visual Geometry Group (VGG-16) convolution neural networks for making performance comparisons. This work focuses on competent deep learning-based feature extraction to discriminate the activities for performing the classification accuracy. The proposed model has been evaluated with VGG-16 using a combination of regular UCF-101 activity datasets and also in very challenging Low-quality videos such as HMDB51. From these investigations, it is proved that the proposed AWFN approach gives higher detection accuracy of 96%. It is approximately 0.3% to 7.88% of higher accuracy than state-of-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.