In situ proximity ligation-based analysis reveals aberrant dimerization and activation of epidermal growth factor receptors prevalent in glioblastoma multiformeAaron Aberrations in Epidermal Growth Factor Receptor (EGFR/ErbB1) signalling are the most common oncogenic stimuli in human glioblastoma multiforme (GBM). Interactions between mutant and wildtype ErbB family members in GBMs are of biological and potential therapeutic importance. In this thesis, we describe our work developing and optimizing a novel in situ proximity ligation assay (PLA) for dimerization and activation analysis of EGFR mutants prevalent in GBMs. Utilizing this novel in situ platform for EGFR dimerization analysis, we seek to systematically interrogate the dimerization capacity and activation status amongst EGFR and EGFR mutants.Our in vitro analysis using this platform demonstrates the aberrant homo-/hetero-dimeric properties of EGFRvIII and EGFRc958 mutants, the two most common mutants associated with EGFR amplification in GBMs. In addition, dimer phospho-activation status can be detected using in situ PLA with ≥ 16-fold sensitivity and ≥ 17-fold signal-to-noise than phospho-EGFR measurements currently undertaken with IHC or IF. These aberrant features are not overexpression dependent but appear independent of cellular expression levels, suggesting inherent properties of the mutant receptors. This EGFR dimerization/activation detection iii platform may also be useful for evaluating novel anti-EGFR therapeutics. Our data suggests that various EGFR monoclonal antibody therapies have unique dimerization blocking abilities and that certain mutant EGFR dimer configurations can evade blockage by anti-EGFR treatments.Furthermore, we report for the first time the detection of wt-and EGFRvIII dimerization in GBM specimens, in keeping with our prior cell line data, and a potential feature of prognostic or diagnostic value in GBMs harbouring them. Additionally, we demonstrate the utility of this platform for measuring pEGFR and total EGFR expression on tissue samples, which has not been efficacious to date with conventional antibody-mediated techniques. Results from this thesis may therefore provide novel insights into the interaction and activation characteristics of EGFR mutants prevalent in GBMs, as well as the efficacy of current anti-EGFR therapies to target these mutants. In summary, these findings demonstrate the successful application of a novel in situ EGFR molecular detection platform which may have clinical utility in diagnostic evaluation or stratification of GBM patient subgroups for prognosis and treatment. Furthermore, since PLA allows specimen assessment of not only expression and activation, but also dimerization, which is not evaluated by current IHC techniques, it will likely serve as a way to evaluate promising anti-EGFR strategies directed at preventing EGFR dimerization and activation. iv ACKNOWLEDGMENTS I am forever indebted to the support of my mother, father, sister and close friends. The journey towards a doctoral degree re...