Streptomyces coelicolor A3(2) is used worldwide for genetic studies, and its complete genome sequence was published in 2002. However, as the whole genome of the type strain of S. coelicolor has not been analyzed, the relationship between S. coelicolor A3(2) and the type strain is not yet well known. To clarify differences in their biosynthetic potential, as well as their taxonomic positions, we sequenced whole genomes of S. coelicolor NBRC 12854T and type strains of its closely related species—such as Streptomyces daghestanicus, Streptomyces hydrogenans, and Streptomyces violascens—via PacBio. Biosynthetic gene clusters for polyketides and non-ribosomal peptides were surveyed by antiSMASH, followed by bioinformatic analyses. Type strains of Streptomyces albidoflavus, S. coelicolor, S. daghestanicus, S. hydrogenans, and S. violascens shared the same 16S rDNA sequence, but S. coelicolor A3(2) did not. S. coelicolor A3(2) and S. coelicolor NBRC 12854T can be classified as Streptomycesanthocyanicus and S. albidoflavus, respectively. In contrast, S. daghestanicus, S. hydrogenans, and S. violascens are independent species, despite their identical 16S rDNA sequences. S. coelicolor A3(2), S. coelicolor NBRC 12854T, S. daghestanicus NBRC 12762T, S. hydrogenans NBRC 13475T, and S. violascens NBRC 12920T each harbor specific polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) gene clusters in their genomes, whereas PKS and NRPS gene clusters are well conserved between S. coelicolor A3(2) and S. anthocyanicus JCM 5058T, and between S. coelicolor NBRC 12854T and S. albidoflavus DSM 40455T, belonging to the same species. These results support our hypothesis that the repertoires of PKS and NRPS gene clusters are different between different species.