Micropropagation is a reliable technique in biotechnology and genetic engineering domain, which has been widely applied for rapid mass propagation of plants in vitro condition. Through micropropagation techniques, reproduction of plants can be attained from different explants using organogenesis and somatic embryogenesis. Over the decades, micropropagation techniques have offered tremendous potential for forest tree improvement. Eucalyptus is a woody plant species recalcitrant to in vitro culture. In general, the micropropagation of Eucalyptus culture processes and the genotype, environment surroundings, and age of explants in culture media is frequently linked with the occurrence of micropropagation variation. In the current review paper, an update of the most important physiological and molecular phenomena aspects of Eucalyptus micropropagation was linked to the most profound information. To achieve the mentioned target, the effect of plant growth regulators (PGRs), nutrients, other adjuvant and environmental features, as well as genetic interaction with morpho- and physiological mechanisms was studied from the induction to plant acclimatisation. On the other hand, important mechanisms behind the organogenesis and somatic embryogenesis of Eucalyptus are discussed. The information of current review paper will help researchers in choosing the optimum condition based on the scenario behind the tissue culture technique of Eucalyptus. However, more studies are required to identify and overcome some of the crucial bottlenecks in this economically important forest species to establish efficient micropropagation protocol at the industrial level.