This paper presents experimental studies on heterodyne Frequency Modulated Continuous Wave (FMCW) signal reception for different optical heterodyne configurations including internal and external mixing between an incoming signal and a local oscillator. Signals and potential noise sources from a fibered FMCW Mach-Zehnder Interferometer (FMCW MZI) are theoretically evaluated. These optical estimations (signal and noise) of various power spectral densities (PSD) are converted into electrical unities to be compared to the measurements.The PSD are validated by using a known alternating voltage with controlled frequency and amplitude. This validation is used to compare the experimental and theoretical detection limits of different FMCW photodetectors, including a Photonic Integrated Circuit (PIC) detector developed and produced at CEA. The detection limit achieved with this PIC module closely matches with the expected theoretical performances. It validates the optical and electronic architecture and the achievements of CEA's design. The miniaturization of this operational detection module is underway. In the future, it will be located on a single chip alongside two Optical Phased Arrays (OPA), one for emission and the other for reception.