Multicomponent or high-entropy ceramics show unique combinations of mechanical, electrical, and chemical properties of importance in coating applications. However, generalizing controllable thin-film processes for these complex materials remains a challenge. Here, understoichiometric (TiZrTaMe)N 1−x (Me = Hf, Nb, Mo, or Cr, 0.12 ≤ x ≤ 0.30) films were deposited on Si(100) substrates at 400 °C by reactive magnetron sputtering using single elemental targets. The influence of ion energy during film growth was investigated by varying the negative substrate bias voltage from ∼10 V (floating potential) to 130 V. The nitrogen content for the samples determined by elastic recoil detection analysis varied from 34.9 to 43.8 at. % (0.12 ≤ x ≤ 0.30), and the metal components were near-equimolar and not affected by the bias voltage. On increasing the substrate bias, the phase structures of (TiZrTaMe)N 1−x (Me = Hf, Nb, or Mo) films evolved from a polycrystalline fcc phase to a (002) preferred orientation along with a change in surface morphology from faceted triangular features to a dense and smooth structure with nodular mounds. All the four series of (TiZrTaMe)N 1−x (Me = Hf, Nb, Mo, or Cr) films exhibited increasing intrinsic stress with increasing negative bias. The maximum compressive stress reached ∼3.1 GPa in Hf-and Cr-containing films deposited at −130 V. The hardness reached a maximum value of 28.0 ± 1.0 GPa at a negative bias ≥100 V for all the four series of films. The effect of bias on the mechanical properties of (TiNbZrMe)N 1−x films can thus guide the design of protective high-entropy nitride films.