Based on the analysis of the problems in material distribution routes, we propose the idea of integrating the intelligent connected vehicle system with material distribution, and construct an intelligent connected vehicle material distribution route model based on k-center spatial cellular clustering and an improved cockroach optimization algorithm. Firstly, we set the research scope to include the distribution center, the distribution points and the geographical environment. A cellular spatial model of distribution points is constructed to quantify and visualize the neighborhood relationship between the distribution centers and distribution points. On this basis, we construct an intelligent connected vehicle material distribution route model based on the improved cockroach optimization algorithm, and the optimal material distribution center is determined by searching for the corresponding optimal distribution route of each distribution center. In the experiment, we use the concept of symmetry to design routes that start from the initial points. The route passes through the distribution point, and finally reaches the destination. In this mode, the experiment generates symmetrically round-trip routes and generates different distribution time schedules. Case studies and comparative experiments show that the proposed algorithm has a total distance cost 1.2 km lower than the distance cost generated by the Baidu Map method and 2.7 km lower than the distance cost generated by the 360 Map method. In terms of the total time cost of the proposed algorithm, it is 0.06 h lower than the time cost generated by the Baidu Map method and 0.135 h lower than the time cost generated by the 360 Map method. Compared with the commonly used Dijkstra algorithm and the A* algorithm for route optimization, our proposed algorithm also generates a lower cost than the two other types of optimization algorithms. In the case study, the distance generated by the proposed algorithm is 1.8 km lower than that of the Dijkstra algorithm, and the total time cost is 0.09 h lower than that of the Dijkstra algorithm. The distance generated by the proposed algorithm is 1.6 km lower than that of the A* algorithm, and the total time cost is 0.08 h lower than that of the A* algorithm. Meanwhile, the proposed algorithm has a lower time complexity than the two commonly used optimization algorithms. Therefore, our proposed algorithm can find the distribution route with the lowest transportation cost. Compared to the commonly used electronic maps and the optimization algorithms for distribution route planning, our proposed algorithm can output distribution routes with lower costs under the same distribution sequence, and reduce the transportation costs for intelligent connected vehicle material distribution systems to the maximum extent.