Proceedings of the 11th International Joint Conference on Knowledge Graphs 2022
DOI: 10.1145/3579051.3579058
|View full text |Cite
|
Sign up to set email alerts
|

An Urban Traffic Knowledge Graph-Driven Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction

Abstract: Traffic flow prediction (TFP) is a fundamental problem of the Intelligent Transportation System (ITS), as it models the latent spatial-temporal dependency of traffic flow for potential congestion prediction. Recent graph-based models with multiple kinds of attention mechanisms have achieved promising performance. However, existing methods for traffic flow prediction tend to inherit the bias pattern from the dataset and lack interpretability. To this end, we propose a Counterfactual Graph Transformer (CGT) mode… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 40 publications
0
0
0
Order By: Relevance