The development of intensive aquaculture is facing the challenge of the sustainable management of effluents. The reproductive sectors (i.e., hatcheries) mainly use water recirculation systems (RAS), which discharge a portion of wastewater. Anaerobic digestion (AD) could reduce the environmental impact of this waste stream while producing biogas. The study is focused on the biochemical methane potential (BMP) of brackish fish hatchery sludges. Wastewater was concentrated by microfiltration and sedimentation and thickened sludges were treated in a BMP system with different inoculum/substrate (I/S) volatile solids ratios (from 50:1 to no inoculum). The highest I/S ratio showed the highest BMP (564.2 NmL CH4/g VS), while different I/S ratios showed a decreasing trend (319.4 and 127.7 NmL CH4/g VS, for I/S = 30 and I/S = 3). In absence of inoculum BMP resulted of 62.2 NmL CH4/g VS. The kinetic analysis (modified Gompertz model) showed a good correlation with the experimental data, but with a long lag-phase duration (from 14.0 to 5.5 days) in particular with the highest I/S. AD applied to brackish water sludges can be a promising treatment with interesting methane productions. For a continuous, full-scale application further investigation on biomass adaptation to salinity and on retention times is needed. Further experimental tests are ongoing.