Strain Hxd3, an alkane-degrading sulfate reducer previously isolated and described by Aeckersberg et al. (F. Aeckersberg, F. Bak, and F. Widdel, Arch. Microbiol. 156:5-14, 1991), was studied for its alkane degradation mechanism by using deuterium and 13 C-labeled compounds. Deuterated fatty acids with even numbers of C atoms (C-even) and 13 C-labeled fatty acids with odd numbers of C atoms (C-odd) were recovered from cultures of Hxd3 grown on perdeuterated pentadecane and [1,2-13 C 2 ]hexadecane, respectively, underscoring evidence that C-odd alkanes are transformed to C-even fatty acids and vice versa. When Hxd3 was grown on unlabeled hexadecane in the presence of [ 13 C]bicarbonate, the resulting 15:0 fatty acid, which was one carbon shorter than the alkane, incorporated a 13 C label to form its carboxyl group. The same results were observed when tetradecane, pentadecane, and perdeuterated pentadecane were used as the substrates. These observations indicate that the initial attack of alkanes includes both carboxylation with inorganic bicarbonate and the removal of two carbon atoms from the alkane chain terminus, resulting in a fatty acid one carbon shorter than the original alkane. The removal of two terminal carbon atoms is further evidenced by the observation that the [1,2-13 C 2 ]hexadecane-derived fatty acids contained either two 13 C labels located exclusively at their acyl chain termini or none at all. Furthermore, when perdeuterated pentadecane was used as the substrate, the 14:0 and 16:0 fatty acids formed both carried the same numbers of deuterium labels, while the latter was not deuterated at its carboxyl end. These observations provide further evidence that the 14:0 fatty acid was initially formed from perdeuterated pentadecane, while the 16:0 fatty acid was produced after chain elongation of the former fatty acid with nondeuterated carbon atoms. We propose that strain Hxd3 anaerobically transforms an alkane to a fatty acid through a mechanism which includes subterminal carboxylation at the C-3 position of the alkane and elimination of the two adjacent terminal carbon atoms.