2023
DOI: 10.1002/lno.12349
|View full text |Cite
|
Sign up to set email alerts
|

Anaerobic oxidation of methane does not attenuate methane emissions from thermokarst lakes

Abstract: The ongoing global temperature rise enhances permafrost thaw in the Arctic, allowing Pleistocene‐aged frozen soil organic matter to become available for microbial degradation and production of greenhouse gases, particularly methane. Here, we examined the extent and mechanism of anaerobic oxidation of methane (AOM) in the sediments of four interior Alaska thermokarst lakes, which formed and continue to expand as a result of ice‐rich permafrost thaw. In cores of surface (~ 1 m) lake sediments we quantified metha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 65 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?