2019
DOI: 10.5335/rsaee.v16i2.8482
|View full text |Cite
|
Sign up to set email alerts
|

Análise de seções transversais de concreto armado e protendido sujeitas a flexão oblíqua composta em estados-limites último e de serviço por integração analítica

Abstract: A flexão oblíqua composta é definida pela ocorrência simultânea de força axial e momento fletor oblíquo. Para tal situação, as verificações de estado-limite último e de serviço possuem certa complexidade. O presente trabalho apresenta um método de cálculo dos esforços solicitantes da flexão oblíqua composta de uma seção transversal de formato poligonal em concreto armado ou protendido partindo de deformações impostas. Para isso, calcula-se a integral analítica da relação tensão-deformação para cada solicitação… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…The methodology for evaluating the axial reaction 𝑅𝑅 𝑐𝑐𝑦𝑦 and the moment 𝑆𝑆 𝑐𝑐𝑦𝑦 by analytical integration, used here, was developed by Silva and Carvalho in 2019 [33], for the NBR 6118:2014 constitutive law of the concrete.…”
Section: Analytical Integral Of Concrete Stressesmentioning
confidence: 99%
See 1 more Smart Citation
“…The methodology for evaluating the axial reaction 𝑅𝑅 𝑐𝑐𝑦𝑦 and the moment 𝑆𝑆 𝑐𝑐𝑦𝑦 by analytical integration, used here, was developed by Silva and Carvalho in 2019 [33], for the NBR 6118:2014 constitutive law of the concrete.…”
Section: Analytical Integral Of Concrete Stressesmentioning
confidence: 99%
“…Figure 5 illustrates one of these trapezoids contained between the line 𝑙𝑙 and the 𝑧𝑧-axis. The contribution of concrete in the equilibrium is evaluated with the Equations 6, 7, 13 and 14 as shown in [33]. For the polynomial part of the constitutive relation, 𝜎𝜎 𝑐𝑐 of Equation 1, that is, strains smaller than zero and larger than 𝜀𝜀 𝑐𝑐2 .…”
Section: Analytical Integral Of Concrete Stressesmentioning
confidence: 99%