2019
DOI: 10.17060/ijodaep.2019.n1.v5.1641
|View full text |Cite
|
Sign up to set email alerts
|

Análisis de clases latentes como técnica de identificación de tipologías

Abstract: RESUMENEn Psicología es frecuente encontrar situaciones en las que se necesita realizar algún tipo de clasificación de personas en subgrupos o clases. Existen técnicas de análisis multivariado como el Análisis Clúster Jerárquico (HCA) que se utilizan habitualmente para este fin. Actualmente, existe un interés creciente por la técnica de Análisis de Clases Latentes (LCA), si bien es una técnica relativamente poco conocida y utilizada. Varios autores han destacado que el LCA presenta importantes ventajas respect… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2025
2025

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…The technique of latent class analysis is particularly effective for identifying non-linear qualitative differences between motivational aspects, condensing data into a more manageable, easier-to-interpret form without excluding information which is important about the relationships between variables. In contrast to traditional cluster analyses, LPA uses less arbitrary, more precise criteria to determine how many groups there are in a sample, producing statistical parameters that allow the model that best fits the data to be selected [18].…”
Section: Theoretical Framework: Expectancy-value Theorymentioning
confidence: 99%
“…The technique of latent class analysis is particularly effective for identifying non-linear qualitative differences between motivational aspects, condensing data into a more manageable, easier-to-interpret form without excluding information which is important about the relationships between variables. In contrast to traditional cluster analyses, LPA uses less arbitrary, more precise criteria to determine how many groups there are in a sample, producing statistical parameters that allow the model that best fits the data to be selected [18].…”
Section: Theoretical Framework: Expectancy-value Theorymentioning
confidence: 99%
“…To evaluate the models’ goodness of fit, the Bayesian information criterion ( BIC ) and the Akaike information criterion ( AIC ) were used, as well as the variations on the latter ( AIC3 and CAIC ), based on the log-likelihood ( LL ) function. Because the BIC is less sensitive to sample size (Ondé & Alvarado, 2019) and the CAIC is stricter in choosing the most parsimonious model than the AIC (Caballero, 2011), both were used as the main fit indices. In all of them, the lower the value of these parameters, the better the model’s fit and the more parsimonious it is.…”
Section: Methodsmentioning
confidence: 99%
“…Para evaluar la bondad de ajuste de los modelos, se utilizaron el criterio de información bayesiana ( BIC ) y de Akaike ( AIC ), y las variantes de este último ( AIC3 y CAIC ), todas basadas en los valores de log-verosimilitud ( LL ). Debido a que el BIC es menos sensible al tamaño muestral (Ondé & Alvarado, 2019) y el CAIC es más estricto que el AIC a la hora de seleccionar el modelo más parsimonioso (Caballero, 2011), ambos se usaron como principales índices de ajuste. En todos ellos, a menor valor de estos parámetros, mejor ajuste del modelo considerado y más parsimonioso.…”
Section: Métodounclassified