pueda llevar a la extinción humana. La infertilidad en hombres es un tema de interés para la salud pública, debido a la disminución de la cantidad y concentración de espermatozoides, causada por hábitos de vida, enfermedades y accidentes. La identificación de factores de riesgo en la infertilidad en hombres no es común en la medicina, pero se están desarrollando técnicas de inteligencia artificial para ayudar en la identificación de estos factores de riesgo. Este artículo se enfoca en el análisis de datos mediante minería de datos, usando la base de datos Fertility, que contiene información de 100 voluntarios. La técnica escogida para el análisis de datos fueron los árboles de decisión en MATLAB. La base de datos original tenía 9 atributos y se redujo a 5 para el modelo de clasificación. En la segunda etapa, el entrenamiento y evaluación cruzada del modelo de clasificación obtuvo un 83.3% de precisión y un tiempo de entrenamiento de 1.8774 segundos. La última etapa, una prueba con el 10% de las muestras, obtuvo un 80% de aciertos. El modelo tuvo una Tasa de Verdaderos Positivos del 94.9% para la clase N y una Tasa de Falsos Negativos del 100% para la clase O.