Leporids (Lagomorpha, Mammalia), especially the mountain hare (Lepus timidus) and the European rabbit (Oryctolagus cuniculus), have been among the most abundant small game in western Europe since the Pleistocene. These animals are preferred prey for more than 40 predators, which increases the chances of finding their skeletal remains at archaeological or natural sites, and in particular karstic formations alternately occupied by Palaeolithic human societies and other predators. Moreover, specific eco‐ethological characteristics for both species also offer the possibility to produce a substantial quantity of their bones accumulated by natural mortality without predation, making it more difficult to identify their origin in the fossil record. Despite this fact, the taphonomic signature of accidental‐natural accumulations of leporids in karsts, such as pitfalls, has never been properly characterised. In order to address these issues, we carried out a detailed taphonomic study of leporid remains in a pitfall without any evidence of human activity, namely at Coulet des Roches (Monieux, Vaucluse, south‐eastern France). At this site, leporids are the most abundant species throughout the Last Glacial Maximum sedimentary sequence. The bone accumulation was analysed in order to determine the most relevant criteria to identify a natural accumulation that results from the accidental fall of individuals in the pitfall. The relative proportions of each species are consistent with their current ethology, and their mortality profiles are compatible with the structure of a living natural population. The completeness rate of the different skeletal portions for both species is relatively high, bones are less fragmented and, unlike what might be expected, very few anatomical connections were preserved. The observed anatomical representation, breakage, and bone surface modification patterns are discussed and compared with available data concerning accumulations with predation. Taken together, the identified criteria contribute valuable help in the recognition of accidental mortality in the fossil record, as well as to evaluate the proportion of leporid bones accumulated naturally and those accumulated by predation, human or not, in a deposit.