Non-performing loan (NPL) is a risk that credit unions must face and to avoid that, prospective debtors need to be surveyed. With previous loan data, support vector machine and naïve bayes can be used as classification methods to give a decision about NPL. We use a data set with 61 data and process the data with orange 3.30 application to see the difference between SVM using linear (SVM-L), polynomial (SVM-P), RBF (SVM-R) and sigmoid (SVM-S) kernel with naïve bayes. We use a cross validation technique with various folds to measure the classification results and a convusion matrix to measure the data training classification results. Naïve bayes scores the highest in terms of accuracy and SVM-R scores the highest in terms of F1, precision and recall. SVM-P scores the lowest in terms of accuracy, F1, precision and recall. Naïve bayes scores the highest in terms of proportion of predicted for true negative class and proportion of actual for true positive class. SVM-S scores the highest in terms of proportion of predicted for true positive class and proportion of actual for true negative class. SVM-P scores the lowest in both proportion of predicted and proportion of actual. Keywords: classification; naïve bayes; non-performing loan; support vector machine Abstrak: Kredit macet merupakan resiko yang sering dialami koperasi simpan pinjam, sehingga perlu dilakukan survei terhadap calon debitur agar kredit menjadi sehat. Dengan menggunakan data pemberian kredit sebelumnya, support vector machine dan naïve bayes digunakan sebagai metode klasifikasi untuk memberikan keputusan macet atau tidaknya kredit anggota koperasi Mutiara Sejahtera. Data set yang berjumlah 61 data diolah menggunakan aplikasi Orange 3.30 dan dilihat perbandingan antara metode SVM dengan kernel linear, polynomial, RBF dan sigomoid dengan metode naïve bayes. Cross validation dengan jumlah fold bervariasi digunakan sebagai nilai ukur klasifikasi dan convusion matrix digunakan sebagai nilai ukur klasifikasi data training. Hasil yang diperoleh adalah naïve bayes memiliki nilai accuracy tertinggi dan SVM kernel RBF memiliki nilai F1, precision dan recall tertinggi. SVM kernel polynomial memiliki nilai terendah untuk accuracy, F1, precision dan recall. Naïve bayes memiliki nilai tertinggi untuk proportion of predicted (PoP) kelas true negative dan proportion of actual (PoA) kelas true positive. SVM kernel sigmoid memiliki nilai tertinggi untuk PoP kelas true positive dan PoA kelas true negative. SVM kernel polynomial memiliki nilai terendah baik untuk PoP maupun PoA true negative dan kelas true positive. Kata kunci: klasifikasi; kredit macet; naive bayes; SVM