2019
DOI: 10.33480/jitk.v5i1.586
|View full text |Cite
|
Sign up to set email alerts
|

Analisis Performa Algoritma Naive Bayes Pada Deteksi Otomatis Citra Mri

Abstract: The brain in humans becomes part of the central nervous system of the human body. The use of imaging with MRI is one that can be used as a first step to detect parts of the human brain. The imaging step is the first step in diagnosing brain tumor. By performing feature extraction, which aims to process the classification of brain tumors, between normal and abnormal brain images using the naive Bayes method. Obtained 41 images which then became 39 datasets. Feature extraction results with 2 classes, normal as m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
3
0
3

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 7 publications
0
3
0
3
Order By: Relevance
“…Ada banyak metode yang digunakan dalam beberapa penelitian terkait ekstraksi fitur dan klasifikasi tumor otak. Metode ekstrasi fitur pada penelitian sebelumnya diantaranya geometri (luas tumor, luas tempurung), dan statistik nilai grayscale citra [2]; LDA (Linear Discriminant Analysis) [3]; eigenbrain otak [4]; Wavelet Transform [5], [6], [7]; Histogram of Oriented Gradient (HOG) [8]; Grey-level co-occurrence matrix (GLCM) [9].…”
Section: Iunclassified
See 1 more Smart Citation
“…Ada banyak metode yang digunakan dalam beberapa penelitian terkait ekstraksi fitur dan klasifikasi tumor otak. Metode ekstrasi fitur pada penelitian sebelumnya diantaranya geometri (luas tumor, luas tempurung), dan statistik nilai grayscale citra [2]; LDA (Linear Discriminant Analysis) [3]; eigenbrain otak [4]; Wavelet Transform [5], [6], [7]; Histogram of Oriented Gradient (HOG) [8]; Grey-level co-occurrence matrix (GLCM) [9].…”
Section: Iunclassified
“…Berbagai metodologi telah dikembangkan untuk identifikasi tumor otak *) penulis korespondensi: Nur Nafi'iyah Email: mynaff@unisla.ac.id Beberapa penelitian identifikasi tumor otak: Mengklasifikasi tumor otak (Glioma, Meningioma, and Pituitary) dengan CNN [1]. Mengklasifikasi jenis tumor (normal dan abnormal) berdasarkan fitur geometri dengan metode Naive Bayes [2]. Mengklasifikasi tumor dengan metode SVM dari ekstraksi ciri LDA citra [3].…”
Section: IIunclassified
“…The human brain is important because it is the body's nerve center. By utilizing MRI (Magnetic Resonance Imaging), imaging technology or magnetic resonance can be used to detect tumor disease in humans (Akbar et al, 2019). Can use MRI images of the brain for the initial stages in analyzing diseases of the brain as well as considerations in operating on the brain.…”
Section: Introductionmentioning
confidence: 99%
“…The stages in diagnosing or identifying diseases based on computer vision science include feature extraction or characteristics of image objects so that they can recognize patterns from an object and can be used for diagnosis. The feature extraction methods used in brain images in previous studies were tumor area, brain area, and presentation of tumor area to brain area, mean value, standard deviation, entropy, and variance of brain images (Akbar et al, 2019); Another feature used is LDA (Linear Discriminant Analysis) (Adinegoro et al, 2015); image mean value feature, image eigenbrain http://dx.doi.org/10.35671/telematika.v16i2.2272 (Soesanti et al, 2011); PCA (Principle Component Analysis) feature (Susmikanti, 2010); the feature used is the value GLCM (Gray Level Co-occurrence Matrix) (Widhiarso et al, 2018); another feature is the DWT (Discrete Wavelet Transformation) (Astuti, 2019), (Varuna Shree & Kumar, 2018), (Kumar et al, 2017; Histogram of Oriented Gradient (HOG) (M & Azizah, 2022); texture features with values of Contrast, Correlation, Energy, Dissimilarity, ASM (Angular Second Moment), Homogeneity, and Entropy (Febrianti et al, 2020).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation