2022
DOI: 10.32672/jnkti.v5i3.4382
|View full text |Cite
|
Sign up to set email alerts
|

Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER

Abstract: Abstrak - Pesatnya peningkatan jasa internet saat ini, ada banyak informasi yang dihasilkan dalam jumlah besar secara terus menerus dalam waktu yang singkat. Akhir-akhir ini, analisis sentimen dengan menggunakan ulasan dan pesan telah menjadi topik penelitian yang populer dibicarakan di bidang Natural Language Processing. Selama bertahun-tahun, permainan online telah menjadi suatu aktivitas yang tidak bisa dipisahkan dari sebagian besar orang. Apex Legends adalah salah satu contoh game yang sangat popular di s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(15 citation statements)
references
References 6 publications
0
3
0
2
Order By: Relevance
“…1. Valence-aware dictionary and Sentiment Reasoner (VADER) is a method used as a model for sentiment analysis and can determine the diversity of data through the intensity of emotional power that exists according to the available Lexicon data dictionary (Abimanyu, 2022). VADER was introduced in 2014 by C.J Hutto and Eric Gilbert whose formation method is based on a human-centric approach, combining qualitative analysis and empirical validation using human wisdom and judgment (Mustaqim et al, 2020).…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…1. Valence-aware dictionary and Sentiment Reasoner (VADER) is a method used as a model for sentiment analysis and can determine the diversity of data through the intensity of emotional power that exists according to the available Lexicon data dictionary (Abimanyu, 2022). VADER was introduced in 2014 by C.J Hutto and Eric Gilbert whose formation method is based on a human-centric approach, combining qualitative analysis and empirical validation using human wisdom and judgment (Mustaqim et al, 2020).…”
Section: Resultsmentioning
confidence: 99%
“…Sentiment can be categorized -such as {negative, neutral, positive} -or can be numerical -such as intensity range or score (Taboada et al, 2011). The lexical approach looks at the sentiment category or score of each word in a sentence and decides on the category or sentiment score of that whole sentence (Abimanyu et al, 2022) In this case, because the data taken is only positive and negative data, we will eliminate it first, so from the data taken from Twitter as many as 1183 for positive as many as 237, and negative as 658. 4, it is a confusion matrix model in a rapid-miner application using the SVM algorithm.…”
Section: Resultsmentioning
confidence: 99%
“…Salah satu keuntungan menggunakan pendeteksian polaritas VADER adalah tersedianya kamus yang mencakup nilai setiap kata. Apakah hasil preprocessing teks positif, negatif, atau neutral akan dinilai menggunakan lexicon, dan skor total (compound) akan ditambahkan [9].…”
Section: Vader (Valence Aware Dictonary Andunclassified
“…This research employs the lexicon method for data labeling using the VADER dictionary designed specifically to detect sentiment in English text, containing 7,500 tokens. After going through the translation stage, VADER will function by invoking lexicon data from the NLTK server to calculate the polarity class of sentiment (Abimanyu et al, 2022).…”
Section: Data Labellingmentioning
confidence: 99%