The analog circuit implementation and the experimental bifurcation analysis of coupled anisochronous self-driven systems modelled by two mutually coupled van der Pol-Duffing oscillators are considered. The coupling between the two oscillators is set in a symmetrical way that linearly depends on the difference of their velocities (i.e., dissipative coupling). Interest in this problem does not decrease because of its significance and possible application in the analysis of different, biological, chemical, and electrical systems (e.g., coupled van der Pol-Duffing electrical system). Regions of quenching behavior as well as conditions for the appearance of Hopf bifurcations are analytically defined. The scenarios/routes to chaos are studied with particular emphasis on the effects of cubic nonlinearity (that is responsible for anisochronism of small oscillations). When monitoring the control parameter, various striking dynamic behaviors are found including period-doubling, symmetry-breaking, multistability, and chaos. An appropriate electronic circuit describing the coupled oscillator is designed and used for the investigations. Experimental results that are consistent with results from theoretical analyses are presented and convincingly show quenching phenomenon as well as bifurcation and chaos.